Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Ergodic properties of random infinite products of nonexpansive mappings

Tytuł:
Ergodic properties of random infinite products of nonexpansive mappings
Autorzy:
Reich, S.
Zaslavski, A. J.
Powiązania:
https://bibliotekanauki.pl/articles/357844.pdf
Data publikacji:
2017
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
complete metric space
hyperbolic space
infinite product
nonexpansive mapping
random weak ergodic property
przestrzeń metryczna pełna
przestrzeń hiperboliczna
produkt nieskończony
mapowanie
własności ergodyczne
Źródło:
Journal of Mathematics and Applications; 2017, 40; 149-159
1733-6775
2300-9926
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper we are concerned with the asymptotic behavior of random (unrestricted) infinite products of nonexpansive selfmappings of closed and convex subsets of a complete hyperbolic space. In contrast with our previous work in this direction, we no longer assume that these subsets are bounded. We first establish two theorems regarding the stability of the random weak ergodic property and then prove a related generic result. These results also extend our recent investigations regarding nonrandom infinite products.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies