In decade eighty, Bang-Yen Chen introduced the concept of biharmonic hypersurface in the Euclidean space. An isometrically immersed hypersurface $x : M^{n} \rightarrow \mathbb{E}^{n+1}$ is said to be biharmonic if $\Delta^{2}x = 0$, where $\Delta$ is the Laplace operator. We study the $L_{r}$-biharmonic hypersurfaces as a generalization of biharmonic ones, where Lr is the linearized operator of the $(r + 1)$th mean curvature of the hypersurface and in special case we have $L_{0} = \Delta$. We prove that $L_{r}$-biharmonic hypersurface of $L_{r}$-finite type and also $L_{r}$-biharmonic hypersurface with at most two distinct principal curvatures in Euclidean spaces are r-minimal.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00