Aim of this study is to show the dangers of filling missing data - particularly medical data. Because there are many dedicated medical expert systems and medical decision support systems, a special attention must be paid on the construction of classifiers. Medical data are almost never complete, and completion of the missing data requires a special care. The safest approach of dealing with missing data would be removing records with missing parameters and/or removing parameters that are missing in the records. Unfortunately reducing data set that is already very small is not always an option. Dangers coming out from data imputation are shown in the article, which presents the influence of selected missing data filling algorithms on the classification accuracy.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00