Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Equitable Total Coloring of Corona of Cubic Graphs

Tytuł:
Equitable Total Coloring of Corona of Cubic Graphs
Autorzy:
Furmańczyk, Hanna
Zuazua, Rita
Powiązania:
https://bibliotekanauki.pl/articles/32361758.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
equitable coloring
total coloring
equitable total coloring
cubic graphs
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1147-1163
2083-5892
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The minimum number of total independent partition sets of V∪E of a graph G = (V, E) is called the total chromatic number of G, denoted by χ'′(G). If the difference between cardinalities of any two total independent sets is at most one, then the minimum number of total independent partition sets of V∪E is called the equitable total chromatic number, and is denoted by χ'′=(G). In this paper we consider equitable total coloring of coronas of cubic graphs, G◦H. It turns out that independently on the values of equitable total chromatic number of factors G and H, equitable total chromatic number of corona G◦H is equal to Δ(G◦H)+1. Thereby, we confirm Total Coloring Conjecture (TCC), posed by Behzad in 1964, and Equitable Total Coloring Conjecture (ETCC), posed by Wang in 2002, for coronas of cubic graphs. As a direct consequence we get that all coronas of cubic graphs are of Type 1.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies