Thomassen described all (except finitely many) regular tilings of the torus $ S_1 $ and the Klein bottle $N_2$ into (3,6)-tilings, (4,4)-tilings and (6,3)-tilings. Many researchers made great efforts to investigate the crossing number of the Cartesian product of an $m$-cycle and an $n$-cycle, which is a special kind of (4,4)-tilings, either in the plane or in the projective plane. In this paper we study the crossing number of the hexagonal graph $ H_{3,n} (n \ge 2) $, which is a special kind of (3,6)-tilings, in the projective plane, and prove that
$$
cr_{N_1} (H_{3,n}) = \begin{cases}
0, & n=2, \\
n-1, & n \ge 3.
\end{cases}
$$
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00