An additive coloring of a graph G is a labeling of the vertices of G from {1, 2, . . ., k} such that two adjacent vertices have distinct sums of labels on their neighbors. The least integer k for which a graph G has an additive coloring is called the additive coloring number of G, denoted χΣ (G). Additive coloring is also studied under the names lucky labeling and open distinguishing. In this paper, we improve the current bounds on the additive coloring number for particular classes of graphs by proving results for a list version of additive coloring. We apply the discharging method and the Combinatorial Nullstellensatz to show that every planar graph G with girth at least 5 has χΣ (G) ≤ 19, and for girth at least 6, 7, and 26, χΣ (G) is at most 9, 8, and 3, respectively. In 2009, Czerwiński, Grytczuk, and Żelazny conjectured that χΣ (G) ≤ χ(G), where χ(G) is the chromatic number of G. Our result for the class of non-bipartite planar graphs of girth at least 26 is best possible and affirms the conjecture for this class of graphs.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00