Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The List Edge Coloring and List Total Coloring of Planar Graphs with Maximum Degree at Least 7

Tytuł:
The List Edge Coloring and List Total Coloring of Planar Graphs with Maximum Degree at Least 7
Autorzy:
Sun, Lin
Wu, Jianliang
Wang, Bing
Liu, Bin
Powiązania:
https://bibliotekanauki.pl/articles/31348158.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graph
list edge coloring
list total coloring
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 1005-1024
2083-5892
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
A graph $G$ is edge $k$-choosable (respectively, total $k$-choosable) if, whenever we are given a list $L(x)$ of colors with $|L(x)| = k$ for each $x ∈ E(G) (x ∈ E(G) ∪ V (G))$, we can choose a color from $L(x)$ for each element $x$ such that no two adjacent (or incident) elements receive the same color. The list edge chromatic index $χ_l^′(G)$ (respectively, the list total chromatic number $χ_l^{′′}(G))$ of $G$ is the smallest integer $k$ such that $G$ is edge (respectively, total) $k$-choosable. In this paper, we focus on a planar graph $G$, with maximum degree $Δ (G) ≥ 7$ and with some structural restrictions, satisfies $χ_l^′(G) = Δ (G)$ and $χ_l^{′′}(G) = Δ (G) + 1$.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies