The crossing number cr(G) of a graph G is the smallest number of edge crossings in any drawing of G. In this paper, we prove that there exists a unique 5-regular graph G on 10 vertices with cr(G) = 2. This answers a question by Chia and Gan in the negative. In addition, we also give a new proof of Chia and Gan’s result which states that if G is a non-planar 5-regular graph on 12 vertices, then cr(G) ≥ 2.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00