A planar 3-connected graph $ G $ is essentially 4-connected if, for any 3-separator $ S $ of $ G $, one component of the graph obtained from $ G $ by removing $ S $ is a single vertex. Jackson and Wormald proved that an essentially 4-connected planar graph on n vertices contains a cycle $ C $ such that $ |V(C)| \ge \frac{2n+4}{5} $. For a cubic essentially 4-connected planar graph $G$, Grünbaum with Malkevitch, and Zhang showed that $G$ has a cycle on at least $ \frac{3}{4} n $ vertices. In the present paper the result of Jackson and Wormald is improved. Moreover, new lower bounds on the length of a longest cycle of $G$ are presented if $G$ is an essentially 4-connected planar graph of maximum degree 4 or $G$ is an essentially 4-connected maximal planar graph.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00