Given graphs G and H, a vertex coloring c : V (G) →ℕ is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ (H,G), is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G, ∑(H,G), is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for ∑(H,G), discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, Gk with the property that k more colors than χ (H,G) are required to realize ∑(H,G) for H-free colorings. More complexity results and constructions of graphs requiring extra colors are given for planar and outerplanar graphs.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00