This paper presents an approach to the recognition of static hand gestures based on data acquired from 3D cameras and point cloud descriptors: Ensemble of Shape Functions and Global Radius-based Surface Descriptor. We describe a recognition algorithm consisting of hand segmentation, noise removal and downsampling of point clouds, dividing point cloud bounding boxes to cells, feature extraction and normalization, and gesture classification. Modifications to the descriptors are proposed in order to increase the hand posture recognition rates while decreasing the quantity of used features as well as the computational cost of the algorithm. Experiments performed on four challenging datasets using cross-validation tests prove the usefulness of our approach.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00