Niching is a group of techniques used in evolutionary algorithms, useful in several types of problems, including multimodal or nonstationary optimization. This paper investigates the applicability of these methods to evolutionary multi-agent systems (EMAS), a hybrid model combining the advantages of evolutionary algorithms and multi-agent systems. This could increase the efficiency of this type of algorithms and allow to apply them to a wider class of problems. As a starting point, a simple but flexible EMAS framework is proposed. Then, it is shown how to extend this framework in order to introduce niching, by adapting two classical niching methods. Finally, preliminary experimental results show the efficiency and the simultaneous discovery of multiple optima by this modified EMAS.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00