This paper tackles the Multi-Robot Task Allocation problem. It consists of two distinct sets: a set of tasks (requiring resources), and a set of robots (offering resources). Then, the tasks are allocated to robots while optimizing a certain objective function subject to some constraints; e.g., allocating the maximum number of tasks, minimizing the distances traveled by the robots, etc. Previous works mainly optimized the temporal and spatial constraints, but no work focused on energetic constraints. Our main contribution is the introduction of energetic constraints on multi-robot task allocation problems. In addition, we propose an allocation method based on parallel distributed guided genetic algorithms and compare it to two state-of-the-art algorithms. The performed simulations and obtained results show the effectiveness and scalability of our solution, even in the case of a large number of robots and tasks. We believe that our contribution is applicable in many contemporary areas of research such as smart cities and related topics.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00