Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of optimization of ALS point cloud on classification

Tytuł:
Impact of optimization of ALS point cloud on classification
Autorzy:
Błaszczak-Bąk, W.
Sobieraj, A.
Powiązania:
https://bibliotekanauki.pl/articles/298363.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
optimization
classification
intensity
Źródło:
Technical Sciences / University of Warmia and Mazury in Olsztyn; 2013, 16(2); 147-164
1505-4675
2083-4527
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Airborne laser scanning (ALS) is one of the LIDAR technologies (Light Detection and Ranging). It provides information about the terrain in form of a point cloud. During measurement is acquired: spatial data (object’s coordinates X, Y, Z) and collateral data such as intensity of reflected signal. The obtained point cloud is typically applied for generating a digital terrain model (DTM) and a digital surface model (DSM). For DTM and DSM generation it is necessary to apply filtration or classification algorithms. They allow to divide a point cloud into object groups (e.g.: terrain points, vegetation, etc.). In this study classification is conducted with one extra parameter–intensity. The obtained point groups were used for digital spatial model generation. Classification is a time and work consuming process, therefore there is a need to reduce the time of ALS point cloud processing. Optimization algorithm enables to decrease the number of points in a dataset. In this study the main goal was to test the impact of optimization on the results of a classification. Studies were conducted in two variants. Variant 1 includes classification of the original point cloud where points are divided in the groups: roofs, asphalt road, tree/bushes, grass. On variant 2 before classification, an optimization algorithm was performed in the original point cloud. Obtained from these two variants object groups were used to generate a spatial model, which was then statistically analyzed.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies