Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations
Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations
The proportional derivative (PD) controller of a differential operator is commonly referred to as the conformable derivative. In this paper, we derive a nonoscillation theorem for damped linear differential equations with a differential operator using the conformable derivative of control theory. The proof of the nonoscillation theorem utilizes the Riccati inequality corresponding to the equation considered. The provided nonoscillation theorem gives the nonoscillatory condition for a damped Euler-type differential equation with a PD controller. Moreover, the nonoscillation of the equation with a PD controller that can generalize Whittaker-Hill-type equations is also considered in this paper. The Whittaker-Hill-type equation considered in this study also includes the Mathieu-type equation. As a subtopic of this work, we consider the nonoscillation of Mathieu-type equations with a PD controller while making full use of numerical simulations.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00