Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Przetwarzanie graficznych danych empirycznych dla potrzeb edukacji sztucznych sieci neuronowych, modelujących wybrane zagadnienia inżynierii rolniczej

Tytuł:
Przetwarzanie graficznych danych empirycznych dla potrzeb edukacji sztucznych sieci neuronowych, modelujących wybrane zagadnienia inżynierii rolniczej
Processing graphics empirical data for the needs of education of artificial neural networks, modeling selected problems of agriculture engineering
Autorzy:
Nowakowski, K.
Boniecki, P.
Weres, J.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/288990.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
piksel
filtracja
segmentacja
kompresja
składowe RGB
pixel
filtration
segmentation
compression
element of RGB
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 2 (90), 2 (90); 243-248
1429-7264
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Wykorzystanie sztucznych sieci neuronowych do odwzorowania wielowymiarowych graficznych zbiorów danych jest nieefektywne a nawet wręcz niemożliwe, co może być spowodowane chociażby niejednorodną reprezentacją wielkości w układzie czy rozmiarem wektora tych wielkości. W takich przypadkach wskazane jest użycie bloku przetwarzania wstępnego tzw. preprocesora. Zaprojektowanie i wytworzenie systemu informatycznego dla tego właśnie celu pozwoliło na transformację danych pierwotnych (zdjęcia fotograficzne) do takiej reprezentacji danych, która będzie odpowiednia dla wykorzystania procesie uczenia sieci neuronowej [Tadeusiewicz i in. 1991].

The use of artificial neural networks for representing multidimensional graphic data sets is ineffective and even not possible, which can be caused for example by heterogeneous representation of the parameter in the system or the size of the vector of these parameters. In such cases it is advisable to use a preprocessing block, the so called preprocessor. Developing and making IT system specifically for this purpose allowed to transform the primary data (photographic pictures) into data representation, to be appropriate for using in the neural network learning process.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies