It this paper, a neural network was utilized in order to create an emulator, which could mimic the behaviour and nonlinear dynamics of a gyroscope with two axes of freedom, subjected to both low- and high-frequency excitation. For this purpose, several known learning methods, such as the gradient and Levenberg-Margquardt method, were used. Three different models of neural networks were considered and compared for their effectiveness: NNFIR, NNARX and the recurrent network NNARMAX.
W niniejszej pracy przedstawiono, w jaki sposób przy użyciu sztucznej sieci neuronowej możliwe jest stworzenie emulatora, który naśladuje zachowanie i nieliniową dynamikę giroskopu o dwóch osiach swobodnych, poddanego wymuszeniom zarówno o niskiej, jak i wysokiej częstotliwości. W celu nauczenia sieci neuronowej, wykorzystano szereg dostępnych algorytmów uczących (m.in. gradientowy, Levenberga-Margquadta). Przetestowano oraz porównano trzy różniące się od siebie modele sieci neuronowych: NNFIR, NNARX oraz sieć rekurencyjną NNARMAX.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00