Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dynamic stability of weak equations of rectangular plates

Tytuł:
Dynamic stability of weak equations of rectangular plates
Dynamiczna stateczność słabych równań płyt prostokątnych
Autorzy:
Tylikowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/280859.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
dynamiczna stateczność
metoda Liapunowa
weak formulation
dynamic stability
different boundary conditions
Liapunov method
Źródło:
Journal of Theoretical and Applied Mechanics; 2008, 46, 3; 679-692
1429-2955
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The stability analysis method is developed for distributed dynamic problems with relaxed ssumptions imposed on solutions. The problem is motivated by structural vibrations with external time-dependent parametric excitations which are controlled using surfacemounted or embedded actuators and sensors. The strong form of equations involves irregulari- ties which lead to computational difficulties for estimation and control problems. In order to avoid irregular terms resulting from differentiation of force and moment terms, dynamical equations are written in a weak form. The weak form of dynamical equations of linear mechanical struc- tures is obtained using Hamilton’s principle. The study of stability of a stochastic weak system is based on examining properties of the Liapunov functional along a weak solution. Solving the problem is not dependent on assumed boundary conditions.

W pracy rozszerzono możliwości analizy stabilności układów ciągłych na układy z osłabionymi warunkami nakładanymi na rozwiązania. Układy aktywnego tłumienia drgań cienkościennych elementów płytowych mogą zawierać elementy piezoelektryczne oddziaływujące na konstrukcję.W uproszczonym modelu oddziaływanie to sprowadza się do działania momentów gnących lub sił rozłożonych na krawędziach elementu piezoelektrycznego. Wprowadzenie dystrybucji -Diraca i jej pochodnej prowadzi do analitycznego zapisu obciążenia i wprowadza nieregularności do rozwiązania zadania drgań wymuszonych układu ciągłego. Słabą postać równań płyty otrzymano za pomocą zasady Hamiltona. Badanie stateczności stochastycznych układów w formie słabej jest oparte na analizie funkcjonału Lapunowa wzdłuż słabego rozwiązania. Rozwiązanie zadania jest niezależne od przyjętych warunków brzegowych.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies