Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Stability of hybrid rotating shaft with simply supported and/or clamped ends in a weak formulation

Tytuł:
Stability of hybrid rotating shaft with simply supported and/or clamped ends in a weak formulation
Słabe sformułowanie stabilności hybrydowych obracających się wałów swobodnie podpartych i sztywnie utwierdzonych
Autorzy:
Tylikowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/280712.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
weak equation
rotating shaft
thermal activation
almost sure stability analysis
Źródło:
Journal of Theoretical and Applied Mechanics; 2008, 46, 4; 993-1007
1429-2955
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper, a technique of dynamic stability analysis proposed for the conventional laminated structures is extended to activated shape memory alloy hybrid rotating structures axially loaded by a time-dependent force. In the stability study, the hybrid shaft is treated as a thin-walled symmetrically laminated beam containing both the conventional fibers, and the activated shape memory alloy fibers parallel to the shaft axis. The stability analysis method is developed for distributed dynamic problems with relaxed assumptions imposed on solutions. The weak form of dynamical equations of the rotating shaft is obtained using Hamilton's principle. We consider the influence of activation through the change of temperature on the stability domains of the shaft in the case when the angular velocity is constant. The force stochastic component is assumed in the form of ergodic stationary processes with continuous realisations. The study of stability analysis is based on examining properties of Liapunov's functional along a weak solution. Solution to the problem is presented for an arbitrary combination of simply supported and/or clamped boundary conditions. Formulas defining dynamic stability regions are written explicitly.

W pracy rozszerzono możliwości analizy stabilności układów ciągłych na obracający się wał hybrydowy poddany czasowo zmiennej sile osiowej przy osłabionych założeniach spełnianych przez rozwiązania. Kompozytowy wał hybrydowy obracający się ze stałą prędkością kątową traktowany jest jako cienkościenna belka zawierającą obok klasycznych włókien również włókna wykonane z materiału z pamięcią kształtu. Słabą postać równań ruchu wału wyprowadzono z zasady Hamiltona. Rozpatrzony jest wpływ aktywacji termicznej na obszar stabilości wału przy założeniu nie tylko swobodnego podparcia obu końców wału, lecz również przy podparciu utwierdzonym i mieszanym. Podczas wyprowadzania warunków stabilności korzysta się z badania właściwości funkcjonału Lapunowa wzdłuż rozwiązania słabych równań ruchu wału. Wyprowadzono jawną postać warunków stabilności.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies