Rotating element bearings are the backbone of every rotating machine. Vibration signals measured from these bearings are used to diagnose the health of the machine, but when the signal-to-noise ratio is low, it is challenging to diagnose the fault frequency. In this paper, a new method is proposed to enhance the signal-to-noise ratio by applying the Asymmetric Real Laplace wavelet Bandpass Filter (ARL-wavelet-BPF). The Gaussian function of the ARL-wavelet represents an excellent BPF with smooth edges which helps to minimize the ripple effects. The bandwidth and center frequency of the ARL-wavelet-BPF are optimized using the Particle Swarm Optimization (PSO) algorithm. Spectral kurtosis (SK) of the envelope spectrum is employed as a fitness function for the PSO algorithm which helps to track the periodic spikes generated by the fault frequency in the vibration signal. To validate the performance of the ARL-wavelet-BPF, different vibration signals with low signal-to-noise ratio are used and faults are diagnosed.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00