Identifying and assessing Parkinson's disease in its early stages is critical to effectively monitoring the disease's progression. Methodologies based on machine learning enhanced speech analysis are gaining popularity as the potential of this field is revealed. Acoustic features, in particular, are used in a variety of algorithms for machine learning and could serve as indicators of the general health of subjects' voices. In this research paper, a novel method is introduced for the automated detection of Parkinson's disease through speech signal analysis, a support vector machines classifier (SVM) and an Artificial Neural Network (ANN) are used to evaluate and classify the data based on two acoustic features: Bark Frequency Cepstral Coefficients (BFCC) and Mel Frequency Cepstral Coefficients (MFCC). These features are extracted from the denoised signals using Empirical Mode Decomposition (EMD). The most relevant results obtained for a dataset of 38 participants are by the BFCC coefficients with an accuracy up to 92.10%. These results confirm that EMD-BFCC-SVM method can contribute to the detection of Parkinson's disease.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00