The task of mining association rules has become one of the most widely used discovery pattern methods in knowledge discovery in databases (KDD). One such task is to represent an item set in the memory. The representation of the item set largely depends on the type of data structure that is used for storing them. Computing the process of mining an association rule impacts the memory and time requirements of the item set. With the constant increase of the dimensionality of data and data sets, mining such a large volume of data sets will be difficult since all of these item sets cannot be placed in the main memory. As the representation of an item set greatly affects the efficiency of the rule-mining association, a compact and compressed representation of the item set is needed. In this paper, a set representation is introduced that is more memory- and cost-efficient. Bitmap representation takes 1 byte for an element, but a set representation uses 1 bit. The set representation is being incorporated in the Apriori algorithm. Set representation is also being tested for different rule-generation algorithms. The complexities of these different rule-generation algorithms that use set representation are being compared in terms of memory and time of execution.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00