Covid-19 has spread across the world and many different vaccines have been developed to counter its surge. To identify the correct sentiments associated with the vaccines from social media posts, we fine-tune various state-of-the-art pretrained transformer models on tweets associated with Covid-19 vaccines. Specifically, we use the recently introduced state-of-the-art RoBERTa, XLNet, and BERT pre-trained transformer models, and the domain-specific CT-BER and BERTweet transformer models that have been pre-trained on Covid-19 tweets. We further explore the option of text augmentation by oversampling using the language model-based oversampling technique (LMOTE) to improve the accuracies of these models - specifically, for small sample data sets where there is an imbalanced class distribution among the positive, negative and neutral sentiment classes. Our results summarize our findings on the suitability of text oversampling for imbalanced, small-sample data sets that are used to fine-tune state-of-the-art pre-trained transformer models as well as the utility of domain-specific transformer models for the classification task.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00