In this paper, we design a parallel-twin convolutional neural network (PT-CNN) deep learning model and use the signal constellation diagram to realize the identification of six advanced optical modulation formats (QPSK, 4QAM, 8PSK, 8QAM, 16PSK, 16QAM) and signal-to-noise-ratio (SNR) estimation. The influence of PT-CNN with different layers and kernel sizes is investigated and the optimal network model is chosen. Simulation results demonstrate that the proposed method has the advantages of not requiring manual feature extraction, having the ability to clearly distinguish the six modulation formats with 100% accuracy when SNR of the received signal sequences is higher than 12 dB. In addition, the high-accurate SNR estimation is realized simultaneously without increasing additional system complexity.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00