Optymalizacja nieciągłych funkcji wielomodalnych z wykorzystaniem kooperacyjnego algorytmu koewolucyjnego Optimization of discontinuous and multimodal functions using cooperative coevolutionry algorithm
W artykule przedstawiono algorytmy koewolucyjne, heurystyczną metodę rozwiązywania złożonych obliczeniowo problemów opartą na zasadzie korelacji oraz darwinowskiej teorii ewolucji. Opisano zalety algorytmu, możliwe zastosowania, sposób działania oraz niektóre z dotychczasowych implementacji. Następnie wybrano trzy wielomodalne lub nieciągłe funkcje testowe: Rosenbrocka, Styblinskiego-Tanga oraz Schaffer’a. Dokonano dekompozycji problemu wyznaczenia minimum globalnego funkcji i przeprowadzono optymalizację wykorzystując kooperacyjny algorytm koewolucyjny. Uzyskane wyniki pozwoliły na ocenę jakości działania algorytmu. Przeprowadzone testy i ich rezultaty są wstępem do szerszych badań nad algorytmami koewolucyjnymi.
In this paper a brief study of coevolutionary algorithm is presented. The coevolutionary algorithm (CA) is an evolutionary algorithm (or collection of evolutionary algorithms) in which the fitness of an individual depends on the relationship between that individual and other individuals. CA can be divided into two fundamental sub-types. In cooperative algorithms, individuals are rewarded when they work well with other individuals and punished when they perform poorly. In competitive algorithms, however, individuals are rewarded at the expense of those with which they interact. The principle of operation of CA is quite similar to traditional evolutionary algorithm. The main deference lies in a fact that CA operate on multi-populations and evaluate individual based on its collaboration with individuals (collaborators) from other populations. Applying CA requires decomposition of the problem into components and assigning each component to a population. This article presents an optimization of discontinuous and multimodal functions using cooperative coevolutionry algorithm. The modified testing functions: Rosenbrocka, Styblinskiego-Tanga and Schaffer’a are decomposed and minimize using coevolutionary algorithm. Obtained results allow to evaluate the quality of the algorithm and will be used for further research on the topic.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00