We abandon the setting of the domain as a Cartesian product of real intervals, customary for first order PFDEs (partial functional differential equations) with initial boundary conditions. We give a new set of conditions on the possibly unbounded domain Ω with Lipschitz differentiable boundary. Well-posedness is then reliant on a variant of the normal vector condition. There is a neighbourhood of ∂Ω with the property that if a characteristic trajectory has a point therein, then its every earlier point lies there as well. With local assumptions on coefficients and on the free term, we prove existence and Lipschitz dependence on data of classical solutions on (0,c)×Ω to the initial boundary value problem, for small c. Regularity of solutions matches this domain, and the proof uses the Banach fixed-point theorem. Our general model of functional dependence covers problems with deviating arguments and integro-differential equations.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00