A subgraph of an edge-colored graph is called rainbow if all of its edges have different colors. For a graph G and a positive integer n, the anti-Ramsey number ar(n,G) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of H. Anti-Ramsey numbers were introduced by Erdos, Simonovits and Sós and studied in numerous papers. Let G be a graph with anti-Ramsey number ar(n, G). In this paper we show the lower bound for ar(n,pG), where pG denotes p vertex-disjoint copies of G. Moreover, we prove that in some special cases this bound is sharp.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00