We consider the initial problem for a quasilinear partial functional differential equation of the first order [formula], z(t, x) = varphi(t, x) ((t, x) ∈ [-h0, 0] x Rn) where z(t, x) : [-h0, 0] x [-h, h] → R is a function defined by z(t, x) (τ, ξ) = z(t + τ, + ξ) for (τ, ξ) ∈ [-h0, 0] x [-h, h]. Using the method of bicharacteristics and the fixed-point theorem we prove, under suitable assumptions, a theorem on the local existence and uniqueness of classical solutions of the problem and its continuous dependence on the initial condition.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00