Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Classical solutions of initial problems for quasilinear partial functional differential equations of the first order

Tytuł:
Classical solutions of initial problems for quasilinear partial functional differential equations of the first order
Autorzy:
Czernous, W.
Powiązania:
https://bibliotekanauki.pl/articles/254909.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
partial functional differential equations
classical solutions
local existence
bicharacteristics
Źródło:
Opuscula Mathematica; 2006, 26, 1; 13-29
1232-9274
2300-6919
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We consider the initial problem for a quasilinear partial functional differential equation of the first order [formula], z(t, x) = varphi(t, x) ((t, x) ∈ [-h0, 0] x Rn) where z(t, x) : [-h0, 0] x [-h, h] → R is a function defined by z(t, x) (τ, ξ) = z(t + τ, + ξ) for (τ, ξ) ∈ [-h0, 0] x [-h, h]. Using the method of bicharacteristics and the fixed-point theorem we prove, under suitable assumptions, a theorem on the local existence and uniqueness of classical solutions of the problem and its continuous dependence on the initial condition.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies