Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Machine Learning Algorithms for Data Enrichment: A Promising Solution for Enhancing Accuracy in Predicting Blast-Induced Ground Vibration in Open-Pit Mines

Tytuł:
Machine Learning Algorithms for Data Enrichment: A Promising Solution for Enhancing Accuracy in Predicting Blast-Induced Ground Vibration in Open-Pit Mines
Autorzy:
Nguyen, Hoang
Bui, Xuan-Nam
Drebenstedt, Carsten
Powiązania:
https://bibliotekanauki.pl/articles/25212182.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
blast-induced ground vibration
data enrichment
sustainable and responsible mining
machine learning
open-pit mining
performance improvement
górnictwo odkrywkowe
sztuczna inteligencja
maszyny
Źródło:
Inżynieria Mineralna; 2023, 2; 79--88
1640-4920
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The issue of blast-induced ground vibration poses a significant environmental challenge in open-pit mines, necessitating precise prediction and control measures. While artificial intelligence and machine learning models hold promise in addressing this concern, their accuracy remains a notable issue due to constrained input variables, dataset size, and potential environmental impact. To mitigate these challenges, data enrichment emerges as a potential solution to enhance the efficacy of machine learning models, not only in blast-induced ground vibration prediction but also across various domains within the mining industry. This study explores the viability of utilizing machine learning for data enrichment, with the objective of generating an augmented dataset that offers enhanced insights based on existing data points for the prediction of blast-induced ground vibration. Leveraging the support vector machine (SVM), we uncover intrinsic relationships among input variables and subsequently integrate them as supplementary inputs. The enriched dataset is then harnessed to construct multiple machine learning models, including k-nearest neighbors (KNN), classification and regression trees (CART), and random forest (RF), all designed to predict blast-induced ground vibration. Comparative analysis between the enriched models and their original counterparts, established on the initial dataset, provides a foundation for extracting insights into optimizing the performance of machine learning models not only in the context of predicting blast-induced ground vibration but also in addressing broader challenges within the mining industry.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies