The aim of the study was to investigate rail vehicle dynamics under primary suspension dampers faults and explore possibility of its detection by means of artificial neural networks. For these purposes two types of analysis were carried out: preliminary analysis of 1 DOF rail vehicle model and a second one - a passenger coach benchmark model was tested in multibody simulation software - MSC.Adams with use of VI-Rail package. Acceleration signals obtained from the latter analysis served as an input data into the artificial neural network (ANN). ANNs of different number of hidden layers were capable of detecting faults for the trained suspension fault cases, however, achieved accuracy was below 63% at the best. These results can be considered satisfactory considering the complexity of dynamic phenomena occurring in the vibration system of a rail vehicle.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00