The main aim of this paper is to evaluate crawlers collecting the job offers from websites. In particular the research is focused on checking the effectiveness of ensemble machine learning methods for the validity of extracted position from the job ads. Moreover, in order to significantly reduce the training time of the algorithms (Random Forests and XGBoost), granularity methods were also tested to significantly reduce the input training dataset. Both methods achieved satisfactory results in accuracy and F1 measures, which exceeded 96%. In addition, granulation reduced the input dataset by more than 99%, and the results obtained were only slightly worse (accuracy between 1% and 5%, F1 between 3% and 8%). Thus, it can be concluded that the considered methods can be used in the evaluation of job web crawlers.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00