Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Feedforward feedback iterative learning control method for the multilayer boundaries of oversaturated intersections based on the macroscopic fundamental diagram.

Tytuł:
Feedforward feedback iterative learning control method for the multilayer boundaries of oversaturated intersections based on the macroscopic fundamental diagram.
Autorzy:
Lin, Xiaohui
Xu, Jianmin
Powiązania:
https://bibliotekanauki.pl/articles/224037.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic engineering
oversaturated intersection
multilayer boundary
macroscopic fundamental diagram
feedforward feedback
iterative control
inżynieria ruchu
przesycone skrzyżowanie
granica wielowarstwowa
makroskopowy diagram fundamentalny
sprzężenie zwrotne
Źródło:
Archives of Transport; 2020, 53, 1; 67-87
0866-9546
2300-8830
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The feedback control based on the model and method of iterative learning control, which in turn is based on the macroscopic fundamental diagram (MFD), mostly belongs to the classification of single-layer boundary control method. However, the feedback control method has the problem of time delay. Therefore, a feed forward feedback iterative learning control (FFILC) method based on MFD of the multi-layer boundary of single-area oversaturated intersections is proposed. The FFILC method can improve the effectiveness of boundary control and avoid the time-delay problem of feedback control. Firstly, MFD theory is used to determine the MFD of the control area; the congestion zone and the transition zone of the control area are identified; and the two-layer boundary of the control area is determined. Then, the FFILC controllers are established at the two-layer boundary of the control area. When the control area enters into a congestion state, the control ratio of traffic flow in and out of the two-layer boundary is adjusted. The cumulative number of vehicles in the control area continues to approach the optimal cumulative number of vehicles, and it maintains high traffic efficiency with high flow rates. Finally, The actual road network is taken as the experimental area, and the road network simulation platform is built. The controller of the feedforward iterative learning control (FILC) is selected as the comparative controller and used to analyse the iterative effect of FFILC. Improvements in the use of traffic signal control indicators for the control area are analysed after the implementation of the FFILC method. Results show that the FFILC method considerably reduces the number of iterations, and it can effectively improve convergence speed and the use of traffic signal evaluation indicators for the control area.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies