Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

State estimation based on Generalized Gaussian distributions

Tytuł:
State estimation based on Generalized Gaussian distributions
Autorzy:
Li, X.
Xie, Y.
Powiązania:
https://bibliotekanauki.pl/articles/220888.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Generalized Gaussian distributions
state estimation
Gaussian particle pilter
nonlinear systems
Źródło:
Metrology and Measurement Systems; 2013, 20, 1; 65-76
0860-8229
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper presents a novel strategy of particle filtering for state estimation based on Generalized Gaussian distributions (GGDs). The proposed strategy is implemented with the Gaussian particle pilter (GPF), which has been proved to be a powerful approach for state estimation of nonlinear systems with high accuracy and low computational cost. In our investigations, the distribution which gives the complete statistical characterization of the given data is obtained by exponent parameter estimation for GGDs, which has been solved by many methods. Based on GGDs, an extension of GPF is proposed and the simulation results show that the extension of GPF has higher estimation accuracy and nearly equal computational cost compared with the GPF which is based on Gaussian distribution assumption.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies