Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Selection of the heat transfer coefficient using swarming algorithms

Tytuł:
Selection of the heat transfer coefficient using swarming algorithms
Autorzy:
Gawrońska, Elżbieta
Dyja, Robert
Zych, Maria
Domek, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/2204686.pdf
Data publikacji:
2022
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
swarm algorithm
ABC algorithm
ACO algorithm
heat transfer coefficient
computer simulation
numerical modelling
Źródło:
Acta Mechanica et Automatica; 2022, 16, 4; 325--339
1898-4088
2300-5319
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The article presents the use of swarming algorithms in selecting the heat transfer coefficient, taking into account the boundary condition of the IV types. Numerical calculations were made using the proprietary TalyFEM program and classic form of swarming algorithms. A function was also used for the calculations, which, during the calculation, determined the error of the approximate solution and was minimalised using a pair of individually employed algorithms, namely artificial bee colony (ABC) and ant colony optimisation (ACO). The tests were carried out to select the heat transfer coefficient from one range. Describing the geometry for a mesh of 408 fine elements with 214 nodes, the research carried out presents two squares (one on top of the other) separated by a heat transfer layer with a κ coefficient. A type III boundary condition was established on the right and left of both edges. The upper and lower edges were isolated, and a type IV boundary condition with imperfect contact was established between the squares. Calculations were made for ABC and ACO, respectively, for populations equal to 20, 40 and 60 individuals and 2, 6 and 12 iterations. In addition, in each case, 0%, 1%, 2% and 5% noise of the reference values were also considered. The obtained results are satisfactory and very close to the reference values of the κ parameter. The obtained results demonstrate the possibility of using artificial intelligence (AI) algorithms to reconstruct the IV type boundary condition value during heat conduction modelling.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies