The paper presents an application of the Boltzmann kinetic equation to the simultaneous modeling of multi-dimensional processes. This equation defines the evolution of the distribution of the probabilisty density in a given phase space. In the case of a grinding process, the considered phase space is defined by the Cartesian coordinates of particle position, the components of particle velocity and the particle size. The theory of Markov processes is used in the paper to solve the Boltzmann equation for the multi-dimensional space of system states. In order to verify the presented model, research into the simultaneous comminution and movement of material in a drum ball mill was performed. The methodology developed to solve the Boltzmann equation significantly reduces the computational time, which is particularly important in the solution of multi-dimensional problems.
Równanie Boltzmanna jest podstawowym równaniem kinetycznej teorii gazów opisującym ewolucję cząstek w rozrzedzonym gazie. W równaniu tym występuje funkcja gęstości prawdopodobieństwa zmiennej losowej w trójwymiarowej przestrzeni fazowej (funkcja rozkładu). W artykule przedstawiono sposób wykorzystania równania Boltzmanna do analizy procesów przeróbki mechanicznej surowców mineralnych. Wynikiem tej analizy jest matematyczny model występujących równocześnie procesów mielenia, klasyfikacji i transportu materiałów ziarnistych. W tym przypadku równanie Boltzmanna opisuje ewolucję gęstości rozkładu ziaren względem składowych prędkości, współrzędnych kartezjańskich oraz rozmiaru ziarna. W młynie funkcja rozkładu zmienia się w wyniku rozdrabniania i ruchu ziaren, a w klasyfikatorze tylko w wyniku ruchu ziaren. W ogólnym przypadku funkcja rozkładu zależy od: czasu, ruchu ziaren, prędkości ziaren i rozmiaru ziaren, który zmienia się w wyniku rozdrabniania. Uwzględnienie zjawisk losowych wymaga wprowadzenia składowej dyfuzyjnej do równania Boltzmanna. W artykule rozpatrzono zastosowanie równania Boltzmanna do rozdrabniania periodycznego i ciągłego. W otrzymanych postaciach równania można uwzględnić rzeczywiste warunki technologiczne, co pozwala opisać stanu układu podczas oddzielnych lub jednoczesnych procesów przeróbczych. Przy założeniu jednowymiarowości procesów rozpatrywane zagadnienie sprowadza się do znanych przypadków, analizowanych jako oddzielne procesy. Obliczenia numeryczne wykonano metodą macierzową z wykorzystaniem teorii łańcuchów Markowa. Przedstawiono wyniki obliczeń dla przypadku jednoczesnego rozdrabniania i ruchu ziaren w młynie bębnowym kulowym. Analiza wyników obliczeń wykazała, że przebieg ewolucji stanu układu ziaren jest prawidłowy. W przyszłych badaniach można uwzględnić w równaniu Boltzmanna kształt ziaren, co oznacza wprowadzenie dodatkowych trzech współrzędnych do przestrzeni fazowej. Współrzędne te związane są ze zmianą długości, szerokości i wysokości ziarna.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00