Partial ranked set sampling (PRSS) is a cost-effective sampling method. It is a combination of simple random sample (SRS) and ranked set sampling (RSS) designs. The PRSS method allows flexibility for the experimenter in selecting the sample when it is either difficult to rank the units within each set with full confidence or when experimental units are not available. In this article, we introduce and define the likelihood function of any probability distribution under the PRSS scheme. The performance of the maximum likelihood estimators is examined when the available data are assumed to have an exponentiated exponential (EE) distribution via some selective RSS schemes as well as SRS. The suggested ranked schemes include the PRSS, RSS, neoteric RSS (NRSS), and extreme RSS (ERSS). An intensive simulation study was conducted to compare and explore the behaviour of the proposed estimators. The study demonstrated that the maximum likelihood estimators via PRSS, NRSS, ERSS, and RSS schemes are more efficient than the corresponding estimators under SRS. A real data set is presented for illustrative purposes.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00