Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Machine learning and traditional econometric models : a systematic mapping study

Tytuł:
Machine learning and traditional econometric models : a systematic mapping study
Autorzy:
Pérez-Pons, María E.
Parra-Dominguez, Javier
Omatu, Sigeru
Herrera-Viedma, Enrique
Corchado, Juan Manuel
Powiązania:
https://bibliotekanauki.pl/articles/2147125.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
machine learning
econometric models
regression
prediction
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 2; 79--100
2083-2567
2449-6499
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Machine Learning (ML) is a disruptive concept that has given rise to and generated interest in different applications in many fields of study. The purpose of Machine Learning is to solve real-life problems by automatically learning and improving from experience without being explicitly programmed for a specific problem, but for a generic type of problem. This article approaches the different applications of ML in a series of econometric methods. Objective: The objective of this research is to identify the latest applications and do a comparative study of the performance of econometric and ML models. The study aimed to find empirical evidence for the performance of ML algorithms being superior to traditional econometric models. The Methodology of systematic mapping of literature has been followed to carry out this research, according to the guidelines established by [39], and [58] that facilitate the identification of studies published about this subject. Results: The results show, that in most cases ML outperforms econometric models, while in other cases the best performance has been achieved by combining traditional methods and ML applications. Conclusion: inclusion and exclusions criteria have been applied and 52 articles closely related articles have been reviewed. The conclusion drawn from this research is that it is a field that is growing, which is something that is well known nowadays and that there is no certainty as to the performance of ML being always superior to that of econometric models.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies