The paper presents the results of the application of the hierarchical clustering methods for the classification of the acoustic emission (AE) signals generated by eight basic forms of partial discharges (PD), which can occur in paper-oil insulation of power transformers. Based on the registered AE signals from the particular PD forms, using a frequency descriptor in the form of the power spectral density (PSD) of the signal, their representation in the form of the set of points on plane XY was created. Next, these sets were subjected to analysis using research algorithms consisting of selected clustering methods. Based on the suggested numeric performance indicators, the analysis of the degree of reproduction of the actual distribution of points showing the particular time waveforms of the AE signals from eight adopted PD forms (PD classes) in the obtained clusters was carried out. As a result of the analyses carried out, the clustering algorithms of the highest effectiveness in the identification of all eight PD classes, classified simultaneously, where indicated. Within the research carried out, an attempt to draw general conclusions as to the selection of the most effective hierarchical clustering method studied and the similarity function to be used for classification of the selected basic PD forms.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00