Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland

Tytuł:
Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland
Autorzy:
Misz-Kennan, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/2086517.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Mineralogiczne
Tematy:
coal wastes
dumps
macerals
bitumens
biomarkers
self-heating
pyrolysis
Źródło:
Mineralogia; 2010, 41, 3/4; 105--237
1899-8291
1899-8526
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes. Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals. Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are n-alkanes, acyclic isoprenoids, hopanes, polycyclic aromatic hydrocarbons (PAHs) and their derivatives, phenol and its derivatives. These compounds occur in all wastes except those most highly altered where they were probably destroyed by high temperatures. These compounds were generated mainly from liptinite-group macerals. Driven by evaporation and leaching, they migrated within and out of the dump. Their presence in some wastes in which microscopically visible organic matter is lacking suggests that they originated elsewhere and subsequently migrated through the dump piles. During their migration, the compounds fractionated, were adsorbed on minerals and/or interacted. The absence of alkenes, and of other unsaturated organic compounds, may reflect primary diagenetic processes that occurred in coals and coal shales during burial and/or organic matter type. Their absence may also be a consequence of heating that lasted many years, hydropyrolysis, and/or the participation of minerals in the reactions occurring within the dumps. The wastes contain compounds typical of organic matter of unaltered kerogen III type and the products of pyrolytic processes, and mixtures of both. In some wastes, organic compounds are completely absent having been destroyed by severe heating. The distributions of n-alkanes in many samples are typical of pyrolysates. In some wastes, narrow n-alkane distributions reflect their generation over small temperature ranges. In others, wider distributions point to greater temperature ranges. Other wastes contain n-alkane distributions typical of unaltered coal and high pristane content or mixtures of pyrolysates and unaltered waste material. The wastes also contain significant amounts of final α Β hopanes. Polycyclic aromatic hydrocarbons are represented only by two- to five-ring compounds as is typical of the thermal alteration of hard coal. Correlations between the degree of organic matter alteration and the relative contents of individual PAHs and hopanes and geochemical indicators of thermal alteration are generally poor. The properties of the organic matter (its composition and rank), temperature fluctuations within the dumps, migration of organic compounds and mineral involvement are probably responsible for this. The processes taking place in coal waste dumps undergoing self-heating and self-combustion are complicated; they are very difficult to estimate and define. The methods of organic petrology and geochemistry give complementary data allowing the processes to be described. However, each of the dumps investigated represents a separate challenge to be surmounted in any regional attempt to delineate the regional environmental impact of these waste dumps.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies