Seymour’s second neighborhood conjecture states that every simple digraph without loops or 2-cycles contains a vertex whose second neighborhood is at least as large as its first. In this paper we show, that from falsity of Seymour’s second neighborhood conjecture it follows that there exist strongly-connected counterexamples with both low and high density (dense and sparse graph). Moreover, we show that if there is a counterexample to conjecture, then it is possible to construct counterexample with any diameter k ≥ 3
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00