Today, a clear trend in electrification process has emerged in all areas to cope with carbon emissions. For this purpose, the widespread use of electric cars and wind energy conversion systems has increased the attention and importance of electric machines. To overcome limitations in mature control techniques, model predictive control (MPC) strategies have been proposed. Of these strategies, predictive torque control (PTC) has been well accepted in the control of electric machines. However, it suffers from the selection of weighting factors in the cost function. In this paper, the weighting factor associated with the flux error term is optimised by the non-dominated sorting genetic algorithm (NSGA-II) algorithm through torque and flux errors. The NSGA-II algorithm generates a set of optimal solutions called Pareto front solutions, and a possible solution must be selected from among the Pareto front solutions for use in the PTC strategy. Unlike the current literature, three decision-making methods are applied to the Pareto front solutions and the weighting factors selected by each method are tested under different operating conditions in terms of torque ripples, flux ripples, cur-rent harmonics and average switching frequencies. Finally, a decision-making method is recommended.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00