Measurement of vital signs of the human body such as heart rate, blood pressure, body temperature and respiratory rate is an important part of diagnosing medical conditions and these are usually measured using medical equipment. In this paper, we propose to estimate an important vital sign – heart rate from speech signals using machine learning algorithms. Existing literature, observation and experience suggest the existence of a correlation between speech characteristics and physiological, psychological as well as emotional conditions. In this work, we estimate the heart rate of individuals by applying machine learning based regression algorithms to Mel frequency cepstrum coefficients, which represent speech features in the spectral domain as well as the temporal variation of spectral features. The estimated heart rate is compared with actual measurement made using a conventional medical device at the time of recording speech. We obtain estimation accuracy close to 94% between the estimated and actual measured heart rate values. Binary classification of heart rate as ‘normal’ or ‘abnormal’ is also achieved with 100% accuracy. A comparison of machine learning algorithms in terms of heart rate estimation and classification accuracy is also presented. Heart rate measurement using speech has applications in remote monitoring of patients, professional athletes and can facilitate telemedicine.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00