A new iterative non-overlapping domain decomposition method is proposed for solving the one- and two-dimensional Helmholtz equation on parallel computers. The spectral collocation method is applied to solve the Helmholtz equation in each subdomain based on the Chebyshev approximation, while the patching conditions are imposed at the interfaces between subdomains through a correction, being a linear function of the space coordinates. Convergence analysis is performed for two applications of the proposed method (DDLC and DDNNLC algorithms - the meaning of these abbreviations is explained below) based on the works of Zanolli and Funaro et al. Numerical tests have been performed and results obtained using the proposed method and other iterative algorithms have been compared. Parallel performance of the multi-domain algorithms has been analyzed by decomposing the two-dimensional domain into a number of subdomains in one spatial direction. For the one-dimensional problem, convergence of the iteration process was quickly obtained using the proposed method, setting a small value of the ? constant in the Helmholtz equation. Another application of the proposed method may be an alternative to other iterative schemes when solving the two-dimensional Helmholtz equation.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00