The holosymmetric group Q of an n-dimensional crystal lattice determined by a given lattice basis B is considered. This group is contained in the n-dimensional orthogonal group O(n) so its elements preserve the orthogonality of basis vectors and their lengths. These conditions yield the decomposition of lattice basis into orthogonal sublattices and next the factorization of the holosymmetric group, which can be written as a direct product of complete monomial groups of k-dimensional (k ≤ n) holosymmetric groups. Simple, decomposable and primitive holosymmetric groups are discussed. The results for n ≤ 4 are presented.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00