Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Data fusion in the decision-making process based on artificial neural networks

Tytuł:
Data fusion in the decision-making process based on artificial neural networks
Autorzy:
Dudczyk, Janusz
Rybak, Łukasz
Jezierski, Zdzisław
Powiązania:
https://bibliotekanauki.pl/articles/1860953.pdf
Data publikacji:
2020
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
data fusion
decision-making process
sensor networks
artificial neural network
fuzja danych
proces decyzyjny
sieci sensorowe
sztuczna sieć neuronowa
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2020, 149; 97-108
1641-3466
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Purpose: The term data fusion is often used in various technologies, where a significant element is the ability of combining data of different typology coming from diverse sources. Currently, the issue of DF is developing towards interdisciplinary field and is connected with 'agile' data (information) synthesis concerning phenomena and objects. Optimal environment to carry out data fusion are SN (Sensor Networks), in which DF process is carried out on a data stage, most often automatically with the use of probable association algorithms of this data. The purpose of this article was an implementation of a neural network and its adaptation in the process of data fusion and solving the value prediction problem. Design/methodology/approach: The conducted experiment was concerned with modelling artificial neural network to form radiation beam of microstrip antenna. In the research the MATLAB environment was used. Findings: The conducted experiment shows that depending on the type of output data set and the task for ANN, the effect of neural network's learning is dependent on the activation function type. The described and implemented network for different activation functions learns effectively, predicts results as well as has the ability to generalize facts on the basis of the patterns learnt. Research limitations/implications: Without doubts, it is possible to improve the model of a network and provide better results than these presented in the paper through modifying the number of hidden layers, the number of neurons, learning step value or modifying the learning algorithm itself. Originality/value: The paper presents the implementation of the sensor network in the context of the process of data fusion and solution prediction. The paper should be read by persons which research interests are focused at the decision support by the information and communication technologies.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies