A non-classical model of interval estimation based on the kernel density estimator is presented in this paper. This model has been compared with interval estimation algorithms of the classical (parametric) statistics assuming that the standard deviation of the population is either known or unknown. The non-classical model does not have to assume belonging of random sample to a normal distribution. A theoretical basis of the proposed model is presented as well as an example of calculation process which makes possible determining confidence intervals of the expected value of long-term noise indicators LDEN and LN. The statistical analysis was carried out for 95% interval widths obtained by using each of these models. The inference of their usefulness was performed on the basis of results of non-parametric statistical tests at significance level α = 0.05. The data used to illustrate the proposed solutions and carry out the analysis were results of continuous monitoring of traffic noise recorded in 2004 in one of the main arteries of Kraków in Poland.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00