Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Neural network model for phase-height relationship of each image pixel in 3D shape measurement by machine vision

Tytuł:
Neural network model for phase-height relationship of each image pixel in 3D shape measurement by machine vision
Autorzy:
Chung, B
Powiązania:
https://bibliotekanauki.pl/articles/173298.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
machine vision
shape measurement
fringe pattern projection
phase-height relationship
neural network
Źródło:
Optica Applicata; 2014, 44, 4; 587-599
0078-5466
1899-7015
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In a three-dimensional measurement system based on a digital light processing projector and a camera, a height estimating function is very important. Sinusoidal fringe patterns of the projector are projected onto the object, and the phase of the measuring point is calculated from the camera image. Then, the height of the measuring point is inferred by the phase. The phase-to-height relationship is unique at each image point. However it is nonlinearly different according to the image coordinates. It is also difficult to obtain the geometrical model because of lens distortion. Even though some studies have been performed on neural network models to find the height from the phase and the related coordinates, the results are not good because of the complex relationship. Therefore, this paper proposes a hybrid method that combines a geometric analysis and a neural network model. The proposed method first finds the phase-to-height relationship from a geometric analysis for each image pixel, and then uses a neural network model to find the related parameters for the relationship. The experimental results show that the proposed method is superior to previous neural network methods.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies