Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Całkowanie symboliczne w Metodzie Elementów Brzegowych Fouriera

Tytuł:
Całkowanie symboliczne w Metodzie Elementów Brzegowych Fouriera
Symbolic integration for Fourier boundary element method
Autorzy:
Łukasik, E.
Pańczyk, B.
Sikora, J.
Powiązania:
https://bibliotekanauki.pl/articles/158763.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki
Tematy:
metoda elementów brzegowych Galerkina i Fouriera
całkowanie symboliczne
Fourier Boundary Element Method, Galerkin Boundary Element Method
symbolic integration
Źródło:
Prace Instytutu Elektrotechniki; 2012, 260; 29-43
0032-6216
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Tradycyjna metoda elementów brzegowych (MEB) pozwala uzyskać rozwiązanie problemu, ale tylko w przypadku istnienia znanego rozwiązania fundamentalnego. Bardziej uniwersalne podejście oferuje MEB Fouriera, która realizuje, przy pewnych założeniach, obliczenia bez znajomości rozwiązania podstawowego. Równoważność obu metod została pokazana w pracy. Współczynniki ostatecznego układu równań liniowych wyznaczane są w przestrzeni Fouriera. W artykule zaprezentowano implementację całkowania symbolicznego w pakiecie Matlab do wyznaczania całek osobliwych w MEB Fouriera.

The traditional Boundary Element Method (BEM) allows for the solution of the problem, but only if there is a known fundamental solution. A more universal approach the Fourier BEM offers. It implements, under certain assumptions, calculations without knowing the fundamental solution. The equivalence of both methods is shown in. Coefficients of the final system of linear equations are determined in the Fourier space. The paper presents the implementation of the symbolic integration in MATLAB to determine the singular integrals in Fourier BEM.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies