Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Lokalizacja uszkodzeń w zadanym obszarze z wykorzystaniem teorii spektralnej

Tytuł:
Lokalizacja uszkodzeń w zadanym obszarze z wykorzystaniem teorii spektralnej
The Approximate Location of Imperfections in Fixed Domain Using the Spectral Theory
Autorzy:
Brzęk, M.
Mitkowski, W.
Powiązania:
https://bibliotekanauki.pl/articles/158099.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
lokalizacja uszkodzeń
operator Laplace'a
wartości własne
location of imperfections
Laplace operator
eigenvalues
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 1, 1; 53-55
0032-4140
Język:
polski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W literaturze naukowej problem lokalizacji uszkodzeń istnieje od dziesiątków lat. Polega on na rozwiązaniu zadania odwrotnego, czyli przybliżonego określenia lokalizacji uszkodzenia na podstawie funkcji i wartości własnych operatora w zadanym obszarze [1]. Algorytmy, przy pomocy których określa się położenie uszkodzenia wymagają skomplikowanych obliczeń [2]. Autorzy niniejszego artykułu chcieli w bezpośredni sposób, przy użyciu wartości własnych operatora Laplace’a dla kwadratu [0,1]×[0,1] znaleźć przybliżone miejsce w którym jest uszkodzenie.

In the following article we will try to find the dependence between the location of imperfections in a square measured [0,1]×[0,1] and the spectrum of the Laplace operator for this square. In theoretical considerations concerning the problem of the location of the imperfection for the fixe bounded domain we will take advantage of spectra theory results and, more precisely, the conclusion of the spectra thorem for compact and self-adjoint operators, which says that all eigenvalues of the Laplace operator on the bounded Ω⊆R^2 domain are positive have finite multiplicities and +∞ is the limit point of eigenvalues. These eigenvalues are dependent on location and size of the imperfection. However, we are interested in the inverse task which consists in localizing the imperfection of the domain on a basis of the spectrum of the operator. In the practical part we will determine the spectrum of 81 samples whose imperfection is placed in different points of domain. On a basis of numerical studies we will hypothesize about the dependence between the spectrum of the Laplace operator of the [0,1]×[0,1] square and the location of the imperfection.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies