Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Index form equations in quintic fields

Tytuł:
Index form equations in quintic fields
Autorzy:
Gaál, István
Győry, Kálmán
Powiązania:
https://bibliotekanauki.pl/articles/1390502.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
index form equations
power integral bases
computer resolution of diophantine equations
Źródło:
Acta Arithmetica; 1999, 89, 4; 379-396
0065-1036
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The problem of determining power integral bases in algebraic number fields is equivalent to solving the corresponding index form equations. As is known (cf. Győry [25]), every index form equation can be reduced to an equation system consisting of unit equations in two variables over the normal closure of the original field. However, the unit rank of the normal closure is usually too large for practical use. In a recent paper Győry [27] succeeded in reducing index form equations to systems of unit equations in which the unknown units are elements of unit groups generated by much fewer generators. On the other hand, Wildanger [32] worked out an efficient enumeration algorithm that makes it feasible to solve unit equations even if the rank of the unit group is ten. Combining these developments we describe an algorithm to solve completely index form equations in quintic fields. The method is illustrated by numerical examples: we computed all power integral bases in totally real quintic fields with Galois group S₅.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies